A SIMPLE SYNTHESIS OF (±)-1-CARBACEPHEM DERIVATIVES

Minoru Hatanaka and Toshiyasu Ishimaru
The Institute of Scientific and Industrial Research, Osaka University,
Mihogaoka, Ibaraki, Osaka 567, Japan

Summary: The Dieckmann condensation of the phenylthioester of 4-(1-t-butoxycarbonylmethyl-3-phenoxyacetamido-azetidin-2-one-4-yl)butylic acid affords a simple route to 3-substituted-8-oxo-7-phenoxyacetamido-l-azabicyclo[4,2,0]oct-2-ene-2-carboxylic acids.

1-Carbacephems, in which the sulfur atom at the 1-position of cephalosporin is replaced by methylene, have been shown to have comparable antibacterial activity with the corresponding cephalosporins 1 . Moreover, recent success on 1-oxa analogue of cephalosporins 2 has stimulated renewed interest in synthesis of 1-carbacephem derivatives 3 . Although most of the previous syntheses have used internal Wittig cyclization, this method seemed to be inconvenient in order to prepare 1-carbacephems bearing heterosubstituents at C-3 3 . We have recently reported an efficient synthesis of carbapenem using Dieckmann condensation as a key step 4 . Now we represent that this method provides a simple procedure for synthesis of 3-hydroxy-($^{\pm}$)-1-carbacephem 7 , which could be converted into various 1-carbacephem derivatives.

The Shiff's base $\underline{1}$, prepared quantitatively from 3-(2-furyl)acrylaldehyde and t-butyl glycinate, reacted with azidoacetyl chloride (Et $_3$ N, CH $_2$ Cl $_2$, -20°C) to give the cis-azetidinone $\underline{2}^{5,6,7}$ (72%). Catalytic reduction (Pd-SrCO $_3$) of $\underline{2}$ and successive acylation with phenoxyacetyl chloride afforded $\underline{3}$ (68%), which was then subjected to ozonolysis yielding $\underline{4}$ (76%). The acid $\underline{4}$ was converted quantitatively into the phenylthioester $\underline{5}$ (PhSH, DCC, CH $_2$ Cl $_2$).

In subsequent cyclization step, internal N-acylation might be competitive side reaction. Indeed, treatment of $\underline{5}$ with equimolar amount of lithium bis-trimethylsilylamido effected smoothly internal N-acylation even at -78°C to give $\underline{6}$. However, the desired Dieckmann cyclization to form $\underline{7}$ was accomplished highly regioselectively when 3 molar amounts of the base were added at once at -78°C to a solution of $\underline{5}$ in THF. This results indicate that carbanion generation undergoes rapidly prior to attack of the amido anion to the phenylthiocarbonyl, spontaneously followed by C-acylation. Although 3-hydroxy-1-carbacephem derivative has been reported to be too unstable to be isolated 3a , pure $\underline{7}$ was obtained as white crystalline powder in 64% yield after flash chromatography of the crude product.

The compound $\underline{7}$ is useful intermediate to prepare various 1-carbacephem derivatives. Treatment of $\underline{7}$ with diazomethane in the usual manner^{3a} gave quantitatively the 3-methoxy-1-carbacephem $\underline{8}$. Moreover, $\underline{7}$ was converted into $\underline{9}$ which possessed aminoethylthio substituent as found in thienamycin by use of the published procedure⁸ [(1) (PhO)₂P(O)Cl, i-Pr₂NEt, CH₃CN, 0°C, (2) (CH₃)₃SiSCH₂CH₂NHCOOPNB, i-Pr₂NEt, 20°C]. Removal of the protecting groups [(1) CF₃COOH, (2) H₂ / Pd-C] gave $\underline{10}$, which had considerable activity toward gram positive organisms.

Phoch₂conh H H H Coobbut Coobbut
$$\frac{1}{2}$$
 $\frac{3}{4}$ R = Cooh $\frac{4}{5}$ R = Cosph Phoch₂conh H H H H Coobbut $\frac{6}{5}$ R = Cosph Phoch₂conh R'=Bu^t $\frac{8}{5}$ X = OMe, R'=Bu^t $\frac{9}{5}$ X = SCH₂CH₂NhCoopnB, R'=Bu^t $\frac{9}{10}$ X = SCH₂CH₂NhCoopnB, R'=Bu^t

References and Notes

- R.N. Guthikonda, L.D. Cama, and B.G. Christensen, <u>J. Am. Chem. Soc.</u>, <u>96</u>, 7585 (1974); R. A. Firestone, J.L. Fahey, N.S. Maciejiwicz, G.S. Patel, and B.G. Christensen, <u>J. Med. Chem.</u>, 20, 551 (1977).
- Y. Hamashima, H. Matsumura, S. Matsuura, W. Nagata, M. Narisada, and T. Yoshida, "Recent advances in the chemistry of β-lactam antibiotics", Chem. Soc. Spec. Publ., 1980, No. 5.
- 3. a) S. Uyeo and H. Ona, Chem. Pharm. Bull., 28, 1563 (1980); b) T. Hirata, T. Ogasa, A. Sato, S. Kobayashi, Y. Ono, C. Shiraki, F. Suzuki, K. Mochida, I. Matsukuma, S. Yoshiiye, S. Tomioka, and K. Tamaki, 4th International Conference on Organic Synthesis, Tokyo, Aug. 1982, Abstr., p.173; I. Matsukuma, S. Yoshiiye, K. Mochida, S. Hashimoto, T. Hirata, and K. Sato, The 103rd Annual Meeting of the Pharmaceutical Society of Japan, Tokyo, April 1983, Abstr., p. 299.
- 4. M. Hatanaka, Y. Yamamoto, H. Nitta, and T. Ishimaru, Tetrahedron Lett., 22, 3883 (1981).
- 5. All compounds are racemic mixtures, but only one enantiomer is depicted for convenience.
- All new compounds were satisfactorily characterised by microanalytical and/or spectroscopic data.
- 7. Selected physical data. $\underline{2}$: \vee (CH₂Cl₂) 2100, 1770 and 1740 cm⁻¹; δ (CDCl₃) 4.90 (1H, d, J=5.4 Hz, H=3). $\underline{3}$: mp 106=108°. $\underline{4}$: mp 154=156°. $\underline{5}$: \vee (CH₂Cl₂) 3400. 1765. 1740 and 1690 cm⁻¹. $\underline{6}$: mp 172=173°; \vee (CH₂Cl₂) 1775 and 1725 cm⁻¹; δ (CDCl₃) 1.47 (9H, s), 1.90 (2H,m), 2.67 (2H, m), 3.92 (2H, s), 4.45 (1H, m), 5.18 (2H, s), 6.06 (1H, d, J=5.4 Hz), and 6.84-7.42 (5H, m). $\underline{7}$: mp 118=121°; \vee (CH₂Cl₂) 3400, 1768, 1693 and 1655 cm⁻¹; δ (CDCl₃) 1.44-2.15 (2H, m), 1.56 (9H, s), 2.49(2H, m), 3.85 (1H, m), 4.54 (2H, s), 5.29 (1H, dd, J=4.4 and 6.8 Hz), and 6.70-7.40 (5H, m). $\underline{8}$: mp159=162°; \vee (CH₂Cl₂) 3400, 1770 and 1695 cm⁻¹; δ (CDCl₃) 3.76 (3H, s, 0Me). $\underline{9}$: \vee (CH₂Cl₂) 3400. 1772, 1730 and 1695 cm⁻¹; δ (CDCl₃) 1.25-2.15 (2H, m), 1.54 (9H, s), 2.56 (2H, m), 2.87 (2H, m), 3.34 (2H, m), 3.89 (1H, m), 4.53 (2H, s), 5.18 (2H, s), 5.38 (1H, dd, J=4.7 and 7.0 Hz), and 6.84-8.33 (9H, m).
- 8. I. Shinkai, R.A. Reamer, F.W. Hartner, T. Liu, and M. Sletzinger, <u>Tetrahedron Lett.</u>, 23, 4903 (1982).